Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Tissue Res ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539007

RESUMO

Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.

2.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288929

RESUMO

This research examines the interaction between human serum albumin (HSA) and various sugar forms (ß-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.Communicated by Ramaswamy H. Sarma.

3.
Chem Biol Interact ; 388: 110826, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101596

RESUMO

Although various regulatory agencies have banned or severely restricted the use of carbofuran (CAR), recent reports indicate the presence of CAR residues in both cultivated and wild areas. This pesticide is a potent inhibitor of acetylcholinesterase (AChE), which acts by preventing the hydrolysis of acetylcholine (ACh). Given the critical role of AChE::ACh in the proper functioning of the nervous system, we thought it appropriate to investigate the binding of CAR to AChEs from Homo sapiens, Danio rerio, Apis mellifera, and Caenorhabditis elegans using homology modelling, molecular docking, molecular dynamics, and quantum biochemistry. Molecular docking and dynamics results indicated peculiar structural behavior in each AChE::CAR system. Quantum biochemistry results showed similar affinities for all complexes, confirming the description of carbofuran as a broad-spectrum pesticide, and have a limited correlation with IC50 values. We found the following decreasing affinity order of AChE species: H. sapiens > A. mellifera > C. elegans > D. rerio. The computational results suggest that CAR occupies different pockets in the AChEs studied. In addition, our results showed that CAR binds to hsAChE and ceAChE in a very similar manner: it has high affinities for the same subsites in both species and forms hydrogen bonds with residues (hsTYR124 and ceTRP107) occupying homologous positions in the peripheral site. This suggests that this nematode is a potential model to evaluate the toxicity of carbamates, even though the sequence identity between them is only 41 %. Interestingly, we also observed that the catalytic histidines of drAChE and amAChE exhibited favorable contacts with carbofuran, suggesting that the non-covalent binding of carbofuran to these proteins may promote faster carbamylation rates than the binding modes to human and worm acetylcholinesterases. Our computational results provide a better understanding of the binding mechanisms in these complexes, as well as new insights into the mechanism of carbamylation.


Assuntos
Carbofurano , Praguicidas , Humanos , Abelhas , Animais , Carbofurano/farmacologia , Simulação de Acoplamento Molecular , Caenorhabditis elegans/metabolismo , Acetilcolinesterase/metabolismo , Peixe-Zebra/metabolismo , Dor , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
4.
Biosensors (Basel) ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754116

RESUMO

The early and non-invasive diagnosis of tumor diseases has been widely investigated by the scientific community focusing on the development of sensors/biomarkers that act as a way of recognizing the adhesion of circulating tumor cells (CTCs). As a challenge in this area, strategies for CTCs capture and enrichment currently require improvements in the sensors/biomarker's selectivity. This can be achieved by understanding the biological recognition factors for different cancer cell lines and also by understanding the interaction between surface parameters and the affinity between macromolecules and the cell surface. To overcome some of these concerns, electrochemical sensors have been used as precise, fast-response, and low-cost transduction platforms for application in cytosensors. Additionally, distinct materials, geometries, and technologies have been investigated to improve the sensitivity and specificity properties of the support electrode that will transform biochemical events into electrical signals. This review identifies novel approaches regarding the application of different specific biomarkers (CD44, Integrins, and EpCAm) for capturing CTCs. These biomarkers can be applied in electrochemical biosensors as a cytodetection strategy for diagnosis of cancerous diseases.


Assuntos
Células Neoplásicas Circulantes , Humanos , Linhagem Celular , Membrana Celular , Eletricidade , Eletrodos
5.
Histochem Cell Biol ; 160(5): 419-433, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37474667

RESUMO

Telocytes are interstitial cells that are present in various tissues, have long cytoplasmic projections known as telopodes, and are classified as CD34+ cells. Telopodes form extensive networks that permeate the stroma, and there is evidence that these networks connect several stromal cell types, giving them an important role in intercellular communication and the maintenance of tissue organisation. Data have also shown that these networks can be impaired and the number of telocytes reduced in association with many pathological conditions such as cancer and fibrosis. Thus, techniques that promote telocyte proliferation have become an important therapeutic target. In this study, ex vivo and in vitro assays were conducted to evaluate the impact on prostatic telocytes of SDF-1, a factor involved in the proliferation and migration of CD34+ cells. SDF-1 caused an increase in the number of telocytes in explants, as well as morphological changes that were possibly related to the proliferation of these cells. These changes involved the fusion of telopode segments, linked to an increase in cell body volume. In vitro assays also showed that SDF-1 enriched prostate stromal cells with telocytes. Altogether, the data indicate that SDF-1 may offer promising uses in therapies that aim to increase the number of telocytes. However, further studies are needed to confirm the efficiency of this factor in different tissues/pathological conditions.


Assuntos
Quimiocina CXCL12 , Telócitos , Masculino , Humanos , Quimiocina CXCL12/metabolismo , Telócitos/metabolismo , Telopódios/metabolismo , Células Estromais , Citoplasma
6.
Oncol Lett ; 25(2): 86, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36760518

RESUMO

Bacteriophages effectively counteract diverse bacterial infections, and their ability to treat most types of cancer has been explored using phage engineering or phage-virus hybrid platforms. In the present study, it was demonstrated that the bacteriophage MS2 can affect the expression of genes associated with the proliferation and survival of LNCaP prostate epithelial cells. LNCaP cells were exposed to bacteriophage MS2 at a concentration of 1×107 plaque forming units/ml for 24-48 h. After exposure, various cellular parameters, including cell viability, morphology, and changes in gene expression, were examined. MS2 affected cell viability adversely, reducing viability by 25% in the first 4 h of treatment; however, cell viability recovered within 24-48 h. Similarly, the AKT, androgen receptor, integrin α5, integrin ß1, MAPK1, MAPK3, STAT3, and peroxisome proliferator-activated receptor-γ coactivator 1α genes, which are involved in various normal cellular processes and tumor progression, were significantly upregulated, whereas the expression levels of HSP90, ITGB5, ITGB3, HSP27, ITGAV, and PI3K genes were unchanged. Therefore, based on viability and gene expression changes, bacteriophage MS2 severely impaired LNCaP cells by reducing anchorage-dependent survival and androgen signaling. A caveolin-mediated endocytosis mechanism for MS2-mediated signaling in prostate cancer cells was proposed based on reports involving bacteriophages T4, M13, and MS2, and their interactions with LNCaP and PC3 cell lines.

7.
ACS Appl Bio Mater ; 5(10): 4903-4912, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36162102

RESUMO

SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.


Assuntos
Biofilmes , Polímeros , Polímeros/farmacologia , Aderência Bacteriana , Propriedades de Superfície , Membrana Celular
8.
Biosensors (Basel) ; 12(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36140070

RESUMO

Cancer is the second leading cause of death globally and early diagnosis is the best strategy to reduce mortality risk. Biosensors to detect cancer biomarkers are based on various principles of detection, including electrochemical, optical, electrical, and mechanical measurements. Despite the advances in the identification of biomarkers and the conventional 2D manufacturing processes, detection methods for cancers still require improvements in terms of selectivity and sensitivity, especially for point-of-care diagnosis. Three-dimensional printing may offer the features to produce complex geometries in the design of high-precision, low-cost sensors. Three-dimensional printing, also known as additive manufacturing, allows for the production of sensitive, user-friendly, and semi-automated sensors, whose composition, geometry, and functionality can be controlled. This paper reviews the recent use of 3D printing in biosensors for cancer diagnosis, highlighting the main advantages and advances achieved with this technology. Additionally, the challenges in 3D printing technology for the mass production of high-performance biosensors for cancer diagnosis are addressed.


Assuntos
Técnicas Biossensoriais , Neoplasias , Biomarcadores Tumorais , Humanos , Neoplasias/diagnóstico , Impressão Tridimensional
9.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012492

RESUMO

Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins-PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteoma/genética , Proteoma/metabolismo , Secretoma
10.
J Cell Biochem ; 123(7): 1247-1258, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661241

RESUMO

Violacein is a secondary metabolite produced by several microorganisms including Chromobacterium violaceum, and it is already used in food and cosmetics. However, due to its potent anticancer and low side effects, its molecular action needs to be deeply scrutinized. Therefore, the main objective of this study was to evaluate the violacein's ability to interfere with three cancer hallmarks: growth factors receptor-dependent signaling, proliferation, and epithelial-mesenchymal transition (EMT). Violacein has been associated with the induction of apoptosis in colorectal cancer (CRC) cells. Here, we demonstrate that this molecule is also active in CRC spheroids and inhibits cell migration. Violacein treatment reduced the amount of EGFR and AXL receptors in the HT29 cell line. Accordingly, the inhibition of the AKT, ERK, and PKCδ kinases, which are downstream mediators of the signaling pathways triggered by EGFR and AXL, is detected. Another interesting finding was that even when the cells were stimulated with transforming growth factor-ß, the EMT marker (N-cadherin) decreased. Therefore, this study provides further evidence that reinforces the potential of violacein as an antitumor agent, once this biomolecule can "switch off" properties associated with cancer plasticity.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Receptores ErbB , Humanos , Indóis/farmacologia
11.
Cell Biol Int ; 46(9): 1495-1509, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598087

RESUMO

The prostate is not an organ exclusive to the male. It is also found in females of several species, including humans, in which part of the Skene gland is homologous to the male prostate. Evidence is accumulating that changes in the stroma are central to tumorigenesis. Equally, telocytes, a recently discovered type of interstitial cell, are essential for the maintenance of stromal organization. However, it is still uncertain whether there are telocytes in the female prostate and if they play a role in tumorigenesis. The present study used ultrastructural and immunofluorescence techniques to investigate the presence of telocytes in the prostate of Mongolian gerbil females, a rodent model that often has a functional prostate in females, as well as to assess the impact of a combination of N-ethyl-N-nitrosourea, testosterone, and estradiol on telocytes. The results point to the presence of telocytes in the female prostate in the perialveolar and interalveolar regions, and reveal that these cells are absent in regions of benign and premalignant lesions in the gland, in which the perialveolar smooth muscle is altered. Additionally, telocytes are also closely associated with infiltrated immune cells in the stroma. Our data suggest that telocytes are important for both the maintenance of smooth muscle and prostatic epithelium integrity, which indicates a protective role against the advancement of tumorigenesis. But telocytes are also associated with immune cells and a proinflammatory/proangiogenic role for these cells cannot be ruled out, implying that telocytes have a complex role in prostatic tumorigenesis in females.


Assuntos
Próstata , Telócitos , Animais , Antígenos CD34/metabolismo , Carcinogênese/metabolismo , Feminino , Gerbillinae/metabolismo , Humanos , Masculino , Próstata/metabolismo , Telócitos/metabolismo
12.
Chem Biodivers ; 19(5): e202200102, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362194

RESUMO

Prostate cancer is the second most common malignancy in men and the development of effective therapeutic strategies remains challenging when more advanced, androgen-independent or insensitive forms are involved. Accordingly, we have evaluated, using flow cytometry, confocal microscopy and image analysis, the anti-proliferative effects of (+)-2,3,9-trimethoxypterocarpan [(+)-PTC, 1] on relevant human prostate cancer cells as well as its capacity to control mitosis within them. In particular, the studies reported herein reveal that (+)-PTC exerts anti-proliferative activity against the PC-3 cell lines by regulating cell-cycle progression with mitosis being arrested in the prophase or prometaphase. Furthermore, it emerges that treatment of the target cells with this compound results in the formation of monopolar spindles, disorganized centrosomes and extensively disrupted γ-tubulin distributions while centriole replication remains unaffected. Such effects suggest (+)-PTC should be considered as a possible therapy for androgen-insensitive/independent prostate cancer.


Assuntos
Microtúbulos , Neoplasias da Próstata , Androgênios , Linhagem Celular , Humanos , Masculino , Mitose , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
13.
Microsc Microanal ; 28(1): 272-280, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35039106

RESUMO

The presence of the prostate in female mammals has long been known. However, pieces of information related to its development are still lacking. The aim of this study was to explore the budding dynamic during the initial prostate development in female gerbils. Pregnant females were timed, the fetuses were euthanized, and the urogenital sinus was dissected out between the embryonic days 20 and 24 (E20-E24 groups). Newborn pups (1-day-old; P1 group) underwent the same procedures. The female prostate development was based on epithelial buds which arose far from the paraurethral mesenchyme (PAM). The epithelial buds reached the PAM at prenatal day 24, crossing a small gap in the smooth muscle layer between the periurethral mesenchyme (PEM) and the PAM. Steroid nuclear receptors such as the androgen receptor and estrogen receptor alpha were localized in the PEM through the urethral wall, although some epithelial labeling was also present in the urogenital sinus epithelium (UGE). P63-positive cells were found only in the UGE, becoming restricted to the basal compartment after the 23rd prenatal day. The results showed that the gerbil female prostate exhibits a distinct budding pattern as compared to the male prostate development.


Assuntos
Próstata , Sistema Urogenital , Animais , Epitélio , Feminino , Gerbillinae , Humanos , Recém-Nascido , Masculino , Mesoderma , Gravidez
14.
Life Sci ; 293: 120264, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031262

RESUMO

AIMS: This study evaluated the association of mucinous metaplasia (MM) with tumor cell proliferation, androgen receptor (AR) expression and invasiveness in Pten conditional knockout mice and the prognostic value of MM markers for patients with PCa. MAIN METHODS: Prostatic lobes samples from genetic engineered mouse model Ptenf/f and Pb-Cre4/Ptenf/f were submitted for histopathological analysis and tissue expression of AR, the proliferation marker Ki67, alpha-smooth muscle actin, and laminin. RNAseq data of prostatic lobes samples were analyzed searching for MM gene expression patterns. We also investigated gene and protein expression related to MM in human PCa public databases. KEY FINDINGS: All knockout animals analyzed showed at least one area of stroma-invading MM, which was absent in the control animals. The tumoral regions of MM showed a proliferative index 5 times higher than other tumoral areas and low expression of the AR (less than 20% of the cells were AR-positive). Disrupted basement membrane areas were observed in MM. The mouse and human PCa transcriptomes exhibited increased expression of the MM markers such as MUC1, MUC19, MUC4, MUC5AC, MUC5B, and TFF3. Gene expression profile was associated with castration-resistant prostate cancer (CRPC) and with a lower probability of freedom from biochemical recurrence. SIGNIFICANCE: The expression of goblet cell genes, such as MUC1, MUC5AC, MUC5B, and TFF3 have significant prognostic value for PCa patients and represent another class of potential therapeutic targets.


Assuntos
Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/deficiência , Mucinas/biossíntese , PTEN Fosfo-Hidrolase/deficiência , Neoplasias de Próstata Resistentes à Castração/metabolismo , Animais , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Masculino , Metaplasia/genética , Metaplasia/metabolismo , Metaplasia/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mucinas/genética , PTEN Fosfo-Hidrolase/genética , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
15.
Biomacromolecules ; 23(4): 1545-1556, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-34890507

RESUMO

Localized release of nucleic acid therapeutics is essential for many biomedical applications, including gene therapy, tissue engineering, and medical implant coatings. We applied the substrate-mediated transfection and layer-by-layer (LbL) technique to achieve an efficient local gene delivery. In the experiments presented herein, we embeded lipoplexes containing plasmid DNA encoding for enhanced green fluorescent protein (pEGFP) within polyelectrolyte alginate-based microgels composed of poly(allylamine hydrochloride) (PAH), chondroitin sulfate (CS), and poly-l-lysine (PLL) with diameters between 70 and 90 µm. Droplet-based microfluidics was used as the main process to produce the alginate (ALG)-based microgels with discrete size, shape, and low coefficient of variation. The physicochemical and morphological properties of the polyelectrolyte microgels were characterized via optical microscopy, scanning electron microscopy (SEM), and zeta potential analysis. We found that polyelectrolyte microgels provide low cytotoxicity and cell-material interactions (adhesion, spreading, and proliferation). In addition, the microsystem showed the ability to load lipoplexes and a loading efficiency equal to 83%, and it enabled in vitro surface-based transfection of MCF-7 cells. This approach provides a new suitable route for cell adhesion and local gene delivery.


Assuntos
Microgéis , Alginatos/química , Biomimética , Técnicas de Cultura de Células em Três Dimensões , Terapia Genética , Polieletrólitos
16.
NPJ Biofilms Microbiomes ; 7(1): 86, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876576

RESUMO

The morphological plasticity of bacteria to form filamentous cells commonly represents an adaptive strategy induced by stresses. In contrast, for diverse human and plant pathogens, filamentous cells have been recently observed during biofilm formation, but their functions and triggering mechanisms remain unclear. To experimentally identify the underlying function and hypothesized cell communication triggers of such cell morphogenesis, spatially controlled cell patterning is pivotal. Here, we demonstrate highly selective cell adhesion of the biofilm-forming phytopathogen Xylella fastidiosa to gold-patterned SiO2 substrates with well-defined geometries and dimensions. The consequent control of both cell density and distances between cell clusters demonstrated that filamentous cell formation depends on cell cluster density, and their ability to interconnect neighboring cell clusters is distance-dependent. This process allows the creation of large interconnected cell clusters that form the structural framework for macroscale biofilms. The addition of diffusible signaling molecules from supernatant extracts provides evidence that cell filamentation is induced by quorum sensing. These findings and our innovative platform could facilitate therapeutic developments targeting biofilm formation mechanisms of X. fastidiosa and other pathogens.


Assuntos
Dióxido de Silício , Xylella , Biofilmes , Humanos , Percepção de Quorum
17.
Anal Chim Acta ; 1185: 339068, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34711311

RESUMO

Preclinical tests for evaluating potential drug candidates using conventional protocols can be exhaustive and high-cost processes. Microfluidic technologies that can speed up this process and allow fast screening of drugs are promising alternatives. This work presents the design, concept, and operational conditions of a simple, modular, and reversible sealing microdevice useful for drug screening. This microdevice allows for the operation of 4 parallel simultaneous conditions and can also generate a diffusive concentration gradient in sextuplicates. We used laminated polydimethylsiloxane (PDMSLAM) and glass as building materials as proof of concept. The PDMSLAM parts can be reused since they can be easily sterilized. We cultured MCF-7 (Michigan Cancer Foundation-7) breast cancer cells. Cells were exposed to a doxorubicin diffusive concentration gradient for 3 h. They were monitored by automated microscopy, and after data processing, it was possible to determine cell viability as a function of doxorubicin concentration. The reversible sealing enabled the recovery of the tested cells and image acquisition. Therefore, this microdevice is a promising tool for drug screening that allows assessing the cellular behavior in dynamic conditions and the recovery of cells for afterward processing and imaging.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Sobrevivência Celular , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Microfluídica
18.
Antibiotics (Basel) ; 10(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34680783

RESUMO

The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 107 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins ITGAV, ITGA5, ITGB1, ITGB3, and ITGB5. Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of ITGAV, ITGA5, ITGB3, ITGB5 genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.

19.
Viruses ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578333

RESUMO

Wild-type or engineered bacteriophages have been reported as therapeutic agents in the treatment of several types of diseases, including cancer. They might be used either as naked phages or as carriers of antitumor molecules. Here, we evaluate the role of bacteriophages M13 and T4 in modulating the expression of genes related to cell adhesion, growth, and survival in the androgen-responsive LNCaP prostatic adenocarcinoma-derived epithelial cell line. LNCaP cells were exposed to either bacteriophage M13 or T4 at a concentration of 1 × 105 pfu/mL, 1 × 106 pfu/mL, and 1 × 107 pfu/mL for 24, 48, and 72 h. After exposure, cells were processed for general morphology, cell viability assay, and gene expression analyses. Neither M13 nor T4 exposure altered cellular morphology, but both decreased the MTT reduction capacity of LNCaP cells at different times of treatment. In addition, genes AKT, ITGA5, ITGB1, ITGB3, ITGB5, MAPK3, and PI3K were significantly up-regulated, whilst the genes AR, HSPB1, ITGAV, and PGC1A were down-regulated. Our results show that bacteriophage M13 and T4 interact with LNCaP cells and effectively promote gene expression changes related to anchorage-dependent survival and androgen signaling. In conclusion, phage therapy may increase the response of PCa treatment with PI3K/AKT pathway inhibitors.


Assuntos
Bacteriófago M13/fisiologia , Bacteriófago T4/fisiologia , Regulação para Baixo , Expressão Gênica , Neoplasias da Próstata , Receptores Androgênicos/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Masculino
20.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445387

RESUMO

Prostate cancer (PCa) is the leading cause of cancer-associated mortality in men, and new biomarkers are still needed. The expression pattern and protein tissue localization of proteoglycans of the syndecan family (SDC 1-4) and syntenin-1 (SDCBP) were determined in normal and prostatic tumor tissue from two genetically engineered mouse models and human prostate tumors. Studies were validated using SDC 1-4 and SDCBP mRNA levels and patient survival data from The Cancer Genome Atlas and CamCAP databases. RNAseq showed increased expression of Sdc1 in Pb-Cre4/Ptenf/f mouse Pca and upregulation of Sdc3 expression and downregulation of Sdc2 and Sdc4 when compared to the normal prostatic tissue in Pb-Cre4/Trp53f/f-;Rb1f/f mouse tumors. These changes were confirmed by immunohistochemistry. In human PCa, SDC 1-4 and SDCBP immunostaining showed variable localization. Furthermore, Kaplan-Meier analysis showed that patients expressing SDC3 had shorter prostate-specific survival than those without SDC3 expression (log-rank test, p = 0.0047). Analysis of the MSKCC-derived expression showed that SDC1 and SDC3 overexpression is predictive of decreased biochemical recurrence-free survival (p = 0.0099 and p = 0.045, respectively), and SDC4 overexpression is predictive of increased biochemical recurrence-free survival (p = 0.035). SDC4 overexpression was associated with a better prognosis, while SDC1 and SDC3 were associated with more aggressive tumors and a worse prognosis.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/patologia , Sindecana-1/genética , Sindecana-3/genética , Sindecana-4/genética , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Transplante de Neoplasias , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Análise Serial de Proteínas , Análise de Sequência de RNA , Análise de Sobrevida , Sindecana-1/metabolismo , Sindecana-3/metabolismo , Sindecana-4/metabolismo , Sinteninas/genética , Sinteninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...